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Abstract

Traditional data mining techniques cannot be directly applied to the real-time data streaming environment. Existing mining classi-
fiers therefore need to be updated frequently to adopt the changes in data streams. In this paper, we address this issue and propose
an adaptive ensemble approach for classification and novel class detection in concept-drifting data streams. The proposed approach
uses traditional mining classifiers and updates the ensemble model automatically so that it represents the most recent concepts in
data streams. For novel class detection we consider the idea that data points belonging to the same class should be closer to each
other and should be far apart from the data points belonging to other classes. If a data point is well separated from the existing data
clusters, it is identified as a novel class instance. We tested the performance of this proposed stream classification model against
existing mining algorithms using real benchmark datasets from UCI machine learning repository. The experimental results proved
that our approach shows great flexibility and robustness in novel class detection in concept-drifting and outperforms traditional
classification models in challenging real-life data stream applications.
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1. Introduction

Data stream analysis and mining is a challenging research
area in data mining and machine learning. It has recently re-
ceived much attention of computational intelligence researchers
[1, 2, 3]. Data stream classification is a method of extracting
knowledge and information from continuous data points [4].
Data in data streams is generated with time passing by and can-
not be controlled by any pre-defined order. A data stream is
real-time, infinite, and dynamic, which has very diverse char-
acteristics compared to the traditional static data or database. It
can be read and processed based on the order of data arrival.
Therefore, a data stream has the following distinctive features:
a) dynamic, b) infinite, c) high dimensional, d) orderly, e) non-
repetitive, f) high-speed, and g) time-varying [5]. In real-life
streaming environments such as weather predictions, astronom-
ical and intrusion detection etc, new instances with new class
labels may appear at any time. Most existing data mining tech-
niques cannot detect and classify such novel class instances in
data streaming environments, because they are trained on in-
stances with a fixed number of class labels [1, 6]. Thus the ex-
isting mining models will misclassify these new instances with
novel class labels [7, 8]. Such data mining classifiers therefore
need to be updated constantly and retrained with the labeled in-
stances of the newly arrived novel classes in data streams, oth-
erwise the mining models will become less and less accurate as
time passes by.

Novel class detection in concept-drifting data streams means
the statistical properties of the target classes change over time
in unforeseen ways. It is an integral part of any realistic data

stream classification technique. There are two main approaches
for data stream classifications: a) Single model incremental
classification, and b) Ensemble model based classification. Sin-
gle model classification techniques incrementally update a sin-
gle classifier with new data to cope with the evolution of the
data stream. To update the single model mining classifier, usu-
ally it requires complex operations to modify the internal struc-
ture of the classifier. In some cases these techniques perform
poorly in the streaming environment. On the contrary, an en-
semble approach uses a combination or a set of classifiers, i.e.
it combines a series of classifiers with the aim of creating an
improved composite model to handle concept-drift efficiently.
These ensemble models can be more effciently built than updat-
ing a single model, and also have higher classification accuracy
rates than single model classification techniques.

In this paper, we propose an adaptive ensemble approach, M,
for classification and novel class detection in concept-drifting
data streams, which significantly extends our previous work
[8, 9] on novel class detection in concept-drifting data stream
environments in several ways. First, in our previous work, we
applied single model incremental learning for data stream clas-
sification. Second, we did not consider any training instance
weighting approach. Third, more discussions and experiments
are added in this work to prove the efficiency of the proposed
adaptive ensemble model. This paper addresses several chal-
lenges in data stream classifications, i.e. infinite length, limited
labeled data, concept-drifting, and concept-evolution. The infi-
nite length problem in data streams can be handled by dividing
a data stream into equal-sized sub-streams [7]. The proposed
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adaptive ensemble model, M, uses traditional data mining clas-
sifiers (decision trees with clustering) and updates itself auto-
matically so that it represents the most recent concepts in data
streams. A new or unlabeled instance is classified by the major-
ity of weighted voting among the classifiers in M. The instances
of each sub-stream are labeled by M and then a new classifier
is trained with the most recent dataset. As soon as the new clas-
sifier becomes competitive, one of the existing classifier in M
is replaced by it, if necessary. The classifier with the smallest
weight reflecting the minimum classification accuracy rate in
M is chosen for replacement. We address the concept-evolution
problem by updating each classifier in M with a novel class de-
tector. Therefore, a novel class can be automatically detected,
if all of the classifiers in M discover the novel class.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 provides an overview of concept-
drifting and Section 4 discusses our proposed approach in de-
tail. Section 5 then describes the test datasets and experimental
analysis. Finally, Section 6 concludes with directions for future
work.

2. Related Work

In order to extract the most useful information and knowl-
edge from a large amount of complex data in real world applica-
tions such as medical diagnosis, radar signal classification, and
economical changes etc, in the past decade, various data min-
ing algorithms have been proposed and developed. Masud et al.
[7] proposed an ensemble approach using traditional classifiers
to detect novel classes before the true labels of the novel class
instances arrived. In order to determine whether an instance
belonged to a novel class, their classification model sometimes
needed to gather more test instances to discover similarities and
differences among the data. Elwell and Polikar [10] also in-
troduced an ensemble of classifiers for incremental learning of
concept-drift named Learn++.NS E. It trained one new clssifier
for each batch of data it received, and combined these classifiers
using a dynamically weighted majority voting technique based
on each classifier’s time-adjusted accuracy rate on current and
past environments. Su et al. [11] proposed an associative clas-
sification algorithm for data streams (AC-DC) based on asso-
ciation rules. Their work aimed to find relationships between
itemsets and extract the complete set of frequent patterns from
the input dataset. The perfomance of AC-DC was tested by
applying 6 datasets from the UCI machine learning repository
[12].

Hou et al. [13] proposed an algorithm for constructing a de-
cision tree from multi-relational data streams, called RedTrees.
Every node in RedTrees denoted one atom, but not one at-
tribute. An atom joined the relational variables so that one path
from the root node to any node was a relational classification
pattern in RedTrees. The information entropy was used to select
the split manners in RedTrees. Also, Surace and Worden [14]
applied a negative selection algorithm of the human immune
system to more general feature sets and time-series novelty de-
tection, where the normal condition of the system or structure
may change due to time-varying environments. Tsai et al. [15]

proposed a concept-drift rule mining tree, called CDR-Tree,
for mining concept-drifting rules in data streams. CDR-Tree
initially integrated new and old instances from different time
scales into pairs and mined the rules of concept-drift through
the construction of a traditional decision tree. CDR-Tree also
efficiently extracted a classification model of each data block
for decision making. Haggett and Chu [16, 17] proposed a sys-
tem which consisted of neural network-based novelty detectors
with properties taken from dynamic predictive coding (DPC)
for specific applications. The proposed system was demon-
strated over two use-cases. It outperformed a specialist ap-
proach in each case. In addition, Zhou et al. [18] proposed
a clustering approach called SWClustering algorithm. It used
Exponential Histogram of Cluster Features (EHCF) to analyse
evolving data streams over sliding windows, which effectively
eliminated the outdated data records. In their work, EHCF
was used to handle the in-cluster evolution with temporal clus-
ter features representing the change of the cluster distribution.
Kolter and Maloof [19] also presented an ensemble method for
concept-drift that dynamically created and removed weighted
experts in response to changes in performance using dynamic
weighted majority (DWM). It trained online learners (i.e. clas-
sifiers) of the ensemble and added or removed experts based on
the global performance of the ensemble.

Furthermore, Aggarwal et al. [20] proposed an on-demand
classification process to dynamically select the appropriate win-
dow of past training data to build a classifier so that the trained
model can adapt quickly to the changes of the underlying data
stream. Dia et al. [21] also introduced a clustering on-demand
(COD) framework to dynamically cluster multiple data streams,
which consisted of two phases, i.e., the online maintenance
phase and the offline clustering phase. The online maintenance
phase provided an efficient mechanism to maintain summary
hierarchies of data streams with multiple resolutions in time
linear in both the number of streams and the number of data
points in each stream. Moreover, an adaptive clustering algo-
rithm was devised for the offline phase to retrieve approxima-
tions of desired sub-streams from summary hierarchies accord-
ing to clustering queries. Gaber and Yu [22] proposed a novel
approach named as STREAM-DETECT to identify changes in
data streams. Their approach was able to detect changes in data
streams by measuring online clustering result deviation over
time. Yang et al. [23] proposed a system called RePro for the
processing of concept-drifting data streams by incorporating re-
active and proactive predictions. RePro modified the prediction
model for oncoming instances by detecting the concept change
and also predicted the coming concept using the concept his-
tory.

The work presented in this research is inspired by the above
related work to build an adaptive ensemble classifier and em-
ploy a weighted majority voting technique for classification.
We also generate decision trees and perform data clustering for
novel class detection in concept-drifting data streams.
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3. Learning with Concept-Drift

In this section, we focus on the introduction of concept-
drifting in data stream classifications. Existing data mining al-
gorithms for incremental learning assumed data streams come
under stationary distribution, where data concepts remain un-
changed. But the concept of any instance might change any
time in real world applications. Concept-drift refers to a change
in the class definitions over time, or underlying class (concept)
of the data changing over time [24, 25, 26]. For example, we
have labeled historical (or training) data, xH = {x1, x2, · · · , xt},
at every time step t. The task is to predict a class label of xt+1
as a target (or test) instance. In order to achieve this, we need
to build a classification model using all or part of available la-
beled historical data for training. The classification model, M,
predicts the class label for xt+1, then xt+2, and so on. Every in-
stance, xt, in time t is generated from a source, S t, where S t

is a distribution over the data. A concept-drift is the dissim-
ilarity between two sources, S p , S q, at two different time
points p and q. The task of a data mining classifier is to classify
x → Ci by determining the prior probabilities, P(Ci), and the
class conditional probabilities, P(Ai j|Ci), from a given dataset.
(The probability calculation is described in detail in sub-section
4.1.) The concept-drift may occur in three ways: a) class pri-
ors P(C) might change over time; b) the distributions of one or
several classes P(x|C) might change; and c) the posterior distri-
butions of the class memberships P(C|x) might change.

Concept-drifting in data streams can be handled in three ways
via: a) window-based approaches, b) weight-based approaches,
and c) ensemble classifiers [15]. A window-based approach
builds a classification model by selecting the instances within
a fixed or dynamic stream sliding window, and adjusts window
sizes based on the classification accuracy rate [27]. It com-
bines all new and old instances together to generate a new train-
ing dataset, but only performs better for concept-drift in small
datasets. In a weight-based approach, each training instance
is assigned a weight. Based on the weights, some outdated
training instances will be opportunistically discarded from the
training dataset. The most popular evolving technique for han-
dling concept-drift in data streams is to use an ensemble clas-
sifier (combination of classifiers), which is shown in Figure 1.
The outputs of several classifiers are combined to determine
a final classification, which is often called fusion rules. Also
the weights are assigned to the individual classifier’s outputs at
each point in time. The weight is ususally a function of the his-
torical performance in the past or estimated perfomance using
10-fold cross-validation. The best classifier among a number
of classifiers (for either classification or prediction) can also be
determined by performing 10-fold cross-validation. For exam-
ple, in ensemble models, a mean error rate for each classifier
is calculated and the best classifier with the lowest mean error
rate will be selected.

Research showed the re-use of traditional data mining algo-
rithms in nonstationary environments is a difficult and challeng-
ing task [28]. Data mining algorithms should be adaptive so that
it can be continuously updated with the novel class instances as
time passes. Most of the existing data mining algorithms are

Figure 1: An example of an ensemble Classifier.

trained on datasets with a fixed number of class labels. There-
fore, a new instance with a new class label will be misclassified
by the traditional data mining classifiers. Figure 2 shows an ex-
ample of novel class instances arriving in data streams. If we
build a traditional decision tree with a fixed number of class la-
bels (see the left-hand side of Figure 2), the decision rules are:
a) if(x > x1 and y < y2) or (x < x1 and y < y1) then class =
plus, and b) if(x > x1 and y > y2) or (x < x1 and y > y1) then
class = minus. This decision tree classification model correctly
classifies the instances with a fixed number of class labels, i.e.
those with ’plus’ and ’minus’ labels, but it will misclassify any
newly arrived novel class instances as shown on the right-hand
side of Figure 2.

Figure 2: Instances with a fixed number of class labels (left) and instances of a
novel class arriving in the data stream (right).

4. The Proposed Adaptive Ensemble Classifier

A data stream consists of a continuous sequence of instances:
{x1, x2, · · · , xnow}, where x1 is the very first instance in the
stream, and xnow is the latest instance, which has just arrived.
One instance is observed at a time, not necessarily in equally
spaced time intervals. Each instance xi is a n-dimensional
feature vector that consists of a number of attributes, Ai =

{A1, A2, · · · , An}, with a class label, Ci ∈ {C1,C2, · · · ,Cn}. Each
attribute has an attribute value, Ai = {Ai1, Ai2, · · · , Aip}. A train-
ing instance xi is labeled with a class value Ci, thus a pair (xi,
Ci) is called a labeled training instance. We refer to instances
{x1, x2, · · · , xnow} as historical data and xnow+1 as a test (or tar-
get) instance. Table 1 summarizes the most commonly used
symbols and terms used throughout the paper.
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Table 1: Commonly used symbols and terms
Symbol Term
xi A data point or instance
Ai An attribute
Aip An attribute’s value
C Total number of classes in data streams
Ci A class label
Di A dataset or data chunk
K Number of clusters
T A decision tree
Wi Weight for a classifier
wi Weight for an instance

In this paper, we have proposed five algorithms for instance
weighting, decision tree construction, clustering, the adaptive
ensemble classifier, and classification with novel class detection
in concept-drifting data streams. These proposed algorithms are
described in the following sub-sections 4.1 to 4.4. Algorithms
4 and 5 (see sub-section 4.4) outline the top level overview of
the proposed adaptive ensemble model, M, for classification
and novel class detection. Especially, Algorithm 4 is used at
the training stage to build the ensemble model. Algorithm 5 is
used at the test stage to classify test instances and detect novel
classes. Figure 3 shows the training and testing phases of the
adaptive ensemble model.

Figure 3: Training and testing phases of the adaptive ensemble model.

As discussed earlier, in this research, we build an ensemble
model, M, to handle concept-drifting with novel class detection.
The model M is updated continuously so that it represents the
most recent concepts in data streams. Figure 4 shows the flow
chart of the proposed adaptive ensemble classifier. Algorithm
4 shows the corresponding processing details. Figure 4 starts
with the procedure of initializing a weight for each training in-
stance in the training set, xi ∈ D, using the highest posterior
probability. The process of initializing weights for training in-
stances is described in Algorithm 1 in sub-section 4.1. Then
the processing generates a new dataset, Dnew, from the origi-
nal training set, D. For the initial run, a selection and replace-
ment technique is used to generate the new dataset, Dnew, from
D. Otherwise, for subsequent runs, the training instances with
higher weights are selected to construct the new dataset, Dnew.
Subsequently, it builds a decision tree, T , from Dnew. The tree
construction process is described in Algorithm 2 in sub-section
4.2. After that we further cluster the instances in Dnew based on
the similarities and differences of instances for each leaf node
in T , and also calculate the threshold value based on the ratio of

percentage of instances for each leaf node of T with instances
in Dnew. The similarities and differences of instances are cal-
culated using the proposed clustering approach shown in Al-
gorithm 3 in sub-section 4.3. We also assign a weight to the
current tree Wi → T based on its classification accuracy rate
for the categorization of the original training instances, xi ∈ D.
We then update the weights of the original training instances
with the intention to increase the weights of those misclassified
samples. Overall, the proposed ensemble model builds three
decision trees and clusters the instances attached with each leaf
node in each decision tree at the training stage.

Figure 4: Flow chart of the proposed adaptive ensemble classifier.

Moreover, Figure 5 shows the flow chart of classification
and novel class detection. Similarly, Algorithm 5 shows the
corresponding processing details. First of all, Figure 5 di-
vides a large data stream into equal-sized sub-data streams.
This process helps to handle the infinite length problem in data
streams. Then it shows the classification of each instance in
each sub-data stream using the ensemble model, M, based on
the weighted majority vote. If any instance does not belong to
any existing data clusters, then this instance is stored in a sep-
arate database and we set novel class f lag to 1. Finally, if the
threshold of Ti ∈ M is abmornal and novel class f lag equals
to 1, then a novel class has arrived. The following sub-sections
introduce the proposed adaptive ensemble classifier and novel
class detection step by step.

4



Figure 5: Flow chart of classification and novel class detection.

4.1. Weighting Training Instances
First of all, we introduce how the weight of each training

instance in D is initialized using naı̈ve Bayes (NB) classifier.
Usually, most existing data mining classification techniques set
the weight, wi → xi ∈ D, to one or an equal value for each
training instance. However in this research, setting an equal
value for wi → xi ∈ D contradicts the general research inten-
tion. Assigning appropriate weights, wi → xi ∈ D, also proved
to increase the classification accuracy rate of mining classifiers
[29]. In this research, each training instance xi ∈ D is initially
assigned a weight based on the posterior probability of a NB
classifier. Inspection of the data shows the instances with less
weights are either noisy or possess unique characteristics com-
pared to other instances with higher weights in D.

The NB classifier first estimates the prior probability, P(Ci),
for each class, Ci, by counting how often Ci occurs in a given
training dataset, D. For each attribute, Ai, the number of occur-
rences of each attribute value, Ai j, can be counted to determine
P(Ai). Similarly, the probability P(Ai j|Ci) also can be estimated
by counting how often each Ai j occurs in Ci ∈ D. This must be
done for all Ai ∈ D and all Ai j ∈ D. For classifying an instance,
xi ∈ D, P(Ci) and P(Ai j|Ci) from D are used to make the pre-
diction. This is done by combining the effects of the different
attribute values, Ai j ∈ xi. We estimate P(xi|Ci) by Equation 1.

P(xi|Ci) =
n∏

j=1

P(Ai j|Ci) (1)

To calculate P(Ci|xi), we need P(Ci) for each Ci, and P(xi|Ci),
and estimate the likelihood that xi is in each Ci. The posterior

probability, P(Ci|xi), is then found for Ci. The class, Ci, with
the highest probability is the one chosen for the instance, xi.
We initialize the weight, wi, for each instance xi ∈ D using the
highest posterior probability. Algorithm 1 outlines the weight-
ing method for training instances.

Algorithm 1 Instance Weighting using NB Classifier
Input: D = {x1, x2, · · · , xn} // Training data.
Output: wi → xi ∈ D. //Weight for each instance.
Method:

1: for each class, Ci ∈ D, do
2: Find the prior probabilities, P(Ci).
3: end for
4: for each attribute value, Ai j ∈ D, do
5: Find the class conditional probabilities, P(Ai j|Ci).
6: end for
7: for each training instance, xi ∈ D, do
8: Find the posterior probability, P(Ci|xi)
9: Assign the weight, wi → xi ∈ D, with Maximum Likeli-

hood (ML) of posterior probability, wi = PML(Ci|xi);
10: end for

4.2. Decision Tree Induction

A decision tree (DT), also known as a classification tree, is
the most popular mining approach for classification and pre-
diction in supervised learning. A DT has many advantages
including a) easy to use and efficient, b) easy to implement,
c) requiring little prior knowledge, and d) built from a large
dataset with many attributes (because the tree size is indepen-
dent of the dataset size). Each DT represents a rule set, and
the training data are recursively partitioned into smaller sub-
sets as the decision tree is being built. A DT has three main
components: nodes, leaves, and branches. Each node is labeled
with an attribute by which the data is to be partitioned. Each
node has a number of branches, which are labeled according to
possible values of the node attribute. A branch connects either
two nodes or a node and a leaf. Leaf nodes represent the fi-
nal categorizations of the data. To make a classification using
a DT, a test instance starts at the root node and follows the tree
down the branches until a leaf node representing a class value
is reached. Most algorithms for DT induction adopt a greedy
(i.e., non-backtracking) approach in which DTs are constructed
in a top-down recursive divide-and-conquer manner.

Moreover, during the early 1980s, Quinlan [30] developed
a DT algorithm known as ID3 (Iterative Dichotomiser) using
information theory. ID3 uses information gain as its attribute
selection measure. The attribute with the highest information
gain is chosen as the root attribute. The expected information
needed to correctly classify an instance in a training dataset,
D, is given in Equation 2, where pi is the probability that an
instance, xi ∈ D, belongs to a class, Ci, and is estimated by
|Ci,D|/|D|.

In f o(D) = −
m∑

i=1

pilog2(pi) (2)
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In f o(D), also known as the entropy of D, is the average
amount of information needed to identify Ci of an instance,
xi ∈ D. The objective of DT approach is to iteratively parti-
tion the given dataset, D, into subsets, {D1,D2, · · · ,Dn}, where
all instances in each Di belong to the same class, Ci. In f oA(D)
is the expected information required to correctly classify an in-
stance, xi, from D based on the partitioning by A. Equation 3
shows In f oA(D) calculation, where |D j |

|D| acts as the weight of
the jth partition.

In f oA(D) =
n∑

j=1

|D j|

|D|
× In f o(D j) (3)

Information gain is defined as the difference between the
original information requirement and the new requirement that
is shown in Equation 4.

Gain(A) = In f o(D) − In f oA(D) (4)

C4.5, a successor of ID3, uses an extension to information
gain known as a gain ratio [31]. It applies a kind of normal-
ization to information gain using a “split information” value
defined analogously with In f o(D) as shown in Equation 5.

S plitIn f oA(D) = −
n∑

j=1

|D j|

|D|
× log2

(
|D j|

|D|

)
(5)

The attribute with the maximum gain ratio is selected as the
splitting attribute. The gain ratio is defined in Equation 6.

GainRatio(A) =
Gain(A)

S plitIn f o(A)
(6)

Furthermore, C5.0, a successor of C4.5, improves the per-
formance of DTs using boosting. Boosting is an approach of
combining different classifiers, but does not always help when
the training data contains a lot of noise. In C5.0, each classifier
is assigned a vote, and the test instance is assigned a class value,
Ci, using a voting technique. CART (classification and regres-
sion trees) is a process of generating a binary tree for decision
making [32]. CART handles missing data and contains a prun-
ing strategy. The SPRINT (Scalable Parallelizable Induction of
Decision Trees) algorithm uses an impurity function called gini
index to find the best split [33]. Equation 7 defines the gini for
a dataset, D, where, p j, is the frequency of class C j ∈ D.

Gini(D) = 1 −
m∑

j=1

p2
j (7)

The goodness of a split of D into subsets D1 and D2 is defined
by Equation 8.

ginisplit(D) =
n1

n(gini(D1))
+

n2

n(gini(D2))
(8)

In this way, the split with the best gini value is chosen. In
the last decade, much research has been done for optimal fea-
ture selection and classification, which adopted hybrid strate-
gies involving evolutionary algorithms and inductive decision
tree learning [34, 35, 36].

Algorithm 2 outlines the classic ID3 decision tree induction.
In this research, we have employed both ID3 and C4.5 algo-
rithms. We are especially motivated by C5.0, the boosting ap-
proach, and employ three decision trees and a weighted voting
technique for the classification of each test instance.

Algorithm 2 Decision Tree Learning
Input: Di = {x1, x2, · · · , xn} // Training data.
Output: T , Decision tree.
Method:

1: T = ∅;
2: Determine the best splitting attribute;
3: T = Create the root node and label it with the splitting at-

tribute;
4: T = Add an arc to the root node for each split predicate and

label it with a corresponding attribute value;
5: for each arc do
6: Di j = Create sub dataset by applying splitting predicate

to Di;
7: if stopping point reached for this path, then
8: T ′ = Create leaf node and label with an appropriate

class;
9: else

10: T ′ = DTBuild(Di);
11: end if
12: T = Add T ′ to arc;
13: end for

As mentioned earlier, three DT classifiers will be gener-
ated and employed to reflect the most recent concepts in data
streams. A weighted majority vote of the three classifiers is
used to classify each instance in the test data stream. The DT
classifiers are also used to measure the abnormal distribution of
the training and test data in order to identify the potential arrival
of novel class instances in data streams.

4.3. Data Clustering

Clustering is an example of unsupervised learning in ma-
chine learning and data mining research. It has been widely
used in many real-world application domains, including biol-
ogy, medicine, anthropology, marketing, pattern recognition,
and image processing. Clustering is also called data segmen-
tation, because clustering partitions large datasets into groups
according to their similarities and differences. It is a form of
learning by observation. Data clustering has recently become a
highly active research topic, because assigning class labels to a
large number of instances can be a very costly process. The goal
of clustering is to determine the intrinsic grouping for a set of
unlabeled data. It is the process of grouping the instances into
clusters (or classes). Dissimilarities are assessed based on the
attribute values describing the instances. Also, a cluster usually
should consist of a group of instances that are similar to one
another and are dissimilar to instances in other clusters.

Given a dataset, Di = {x1, x2, · · · , xn}, of n number of in-
stances, a similarity based clustering method constructs K clus-
ters of the instances and K ≤ n, which together satisfy the
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following requirements: (1) each cluster must contain at least
one instance, and (2) each instance must belong to exactly one
cluster. A similarity measure, sim(xi, xl), is also defined for
the comparison of any two training instances, xi, xl ∈ Di. A
good clustering is that instances in the same cluster are “close”
or related to each other, whereas instances of different clusters
are “far apart” or very different from one another. Each in-
stance xi ∈ Di is assigned to one cluster K j, 1 ≤ j ≤ k, where
Di → {1, · · · , k}, and k is an integer value. Given a cluster,
K j,∀x jl, x jm ∈ K j, and xi < K j, sim(x jl, x jm) > sim(x jl, xi). Al-
gorithm 3 outlines the similarity based clustering method used
in this research.

Algorithm 3 Similarity Based Clustering
Input: Di = {x1, x2, · · · , xn} // A set of instances.
Output: A set of K clusters.
Method:

1: K1 = {x1};
2: K = {K1};
3: k = 1;
4: for i = 2 to n do
5: find xm in some cluster Km in K such that sim(xi, xm) is

the maximum;
6: if sim(xi, xm) ≥ threshold value then
7: Km = Km ∪ xi

8: else
9: k = k + 1;

10: Kk = {xi};
11: end if
12: end for

The proposed clustering Algorithm 3 is used to especially
measure the class distribution of the training and test data and
monitor the arrival of an exceptional novel class. It confirms
the arrival of a novel class after the three DT classifiers show
abnormal class distributions in leaf nodes and indicate a novel
class may arrive. The detailed approach for the ensemble clas-
sifier generation and novel class detection is introduced in the
following.

4.4. An Adaptive Ensemble Classifier and Novel Class Detec-
tion

As mentioned earlier, Algorithm 4 presents the detailed pro-
cedure for the generation and training of the proposed adap-
tive ensemble classifier. It starts with initializing a weight for
each instance in the training dataset, xi ∈ D, using Algorithm
1. Then Algorithm 4 generates a new dataset, Dnew, from the
original training set, D, and builds a decision tree, T , from Dnew

using Algorithm 2. After that Algorithm 4 further clusters the
training instances using Algorithm 3 and calculates the thresh-
old for each leaf node in the decision tree. Finally, Algorithm 4
assigns a weight to the current decision tree based on its classi-
fication accuracy rate for the categorization of the original train-
ing instances.

Moreover, Algorithm 4 also updates the weight of each train-
ing instance, xi ∈ D, in the following way so that if an training

instance is correctly classified then its weight is decreased, or if
misclassified then its weight will remain unchanged thus com-
paratively increased. First of all, we assign an error rate for each
instance in D. If an instance, xi, is misclassified, then err(xi) is
1. Otherwise, it is 0. We also calculate the overall misclassi-
fication error rate: error(Ti) =

∑d
i wi ∗ err(xi), where err(xi)

is the misclassification error and wi is the initialized weight
for each instance. Subsequently, if xi is correctly classified,
its weight will be decreased by multipling error(Ti)

(1−error(Ti))
. As a re-

sult, the weights of misclassified instances are increased and the
weights of correctly classified instances are decreased. Once
the weights of all of the correctly classified instances are up-
dated, the weights for all instances including the misclassified
instances are normalized so that their sum remains the same as
it was before. The normalizasion processing multiplies the sum
of the old weights, divided by the sum of the new weights.

Algorithm 4 The Adaptive Ensemble Classifier
Input: D = {x1, x2, · · · , xn} // Training dataset.
Output: M, An ensemble model.
Method:

1: for each instance, xi ∈ D, do
2: Initialize the weight, wi → xi ∈ D, using Algorithm 1.
3: end for
4: for 1 to N, where N = 3 do
5: if N = 1 then
6: Generate a new dataset, Dnew, from D using a selection

and replacement technique.
7: else
8: Generate a new dataset, Dnew, from D with xi of higher

weights.
9: end if

10: Build a decision tree, T , from Dnew using Algorithm 2.
11: for each leaf node in T do
12: Cluster the instances of Dnew using Algorithm 3.
13: Calculate the threshold value based on the ratio of per-

centage of instances in this leaf node and instances in
Dnew.

14: end for
15: Initialize the weight, Wi → T , based on its classification

accuracy rate for the categorization of the instances, xi ∈

D.
16: Update the weight, wi, of each xi ∈ D.
17: end for

The above processing iterates three times. Overall, the en-
semble model, M, builds three trees. When classifying contin-
uous data streams in real-time, instances in each sub data stream
are labeled by M. The model assigns a class label to an instance
using majority of weighted votes of the three decision trees. A
new training dataset Dnew+1 is created by adding recently ar-
rived instances in the data stream to the latest Dnew, and a new
Tnew is built using Dnew+1. Figure 6 shows the ensemble model,
where decision trees are built from each data stream.

Tnew built with the most recent dataset is also assigned a
weight, W → Tnew, based on the classification accuracy rate

7



Figure 6: An example of DTS construction from each data stream.

for Dnew+1. If Tnew has a higher weight (a better classification
accuracy rate) than any of Ti ∈ M, then the minimum weighted
T ∈ M will be replaced by Tnew. Thus Tnew is added to M. Then
instances xi ∈ Dnew+1 are clustered based on their similarities
for each leaf node in Tnew, and the threshold for each leaf node
in Tnew is also calculated. In this research, a novel class can be
automatically detected. For example, if the number of instances
in D classified by a leaf node of Ti ∈ M increases or decreases
in comparison with the threshold value calculated earlier, then
a novel class may arrive. Also if the newly arrived instances do
not belong to any existing clusters in all the three trees, which
confirms a novel class arrives. The above processing details on
the data stream classification and novel class detection are also
summaried in Algorithm 5.

Algorithm 5 Classification and Novel Class Detection
Input: Real data streams and the ensemble model, M.
Output: Labeling data streams and novel class detection
Method:

1: Divide the data stream into equal-sized sub-data streams.
2: for each sub-data stream do
3: for each instance do
4: Classify the instance using each Ti ∈ M.
5: Return a weighted vote (which counts as one vote).
6: Assign a class label with majority of weighted votes.
7: if an instance does not belong to any existing clusters

then
8: novel class f lag = 1
9: Store this instance in a separate dataset.

10: end if
11: end for
12: end for
13: if threshold of Ti ∈ M is abnormal and

novel class f lag == 1 then
14: A novel class arrives.
15: end if

5. Experiments

The ensemble classifier is evaluated using data streams rep-
resenting concept-drifting in challenging real-life applications.
In this section, we describe the test datasets, experimental envi-
ronments, and present the evaluation results.

5.1. Datasets

Data stream mining is a process of analyzing online data
to discover patterns. It uses sophisticated mathematical algo-
rithms to segment the continuous data and evaluate the prob-
ability of future events. Table 2 describes the datasets from
UCI machine learning repository [12] used in our experimen-
tal analysis to evaluate the developed ensemble classifier and
novel class detection function. The employed test data include
the NSL-KDD dataset, the large soybean and the image seg-
mentation databases. Each test dataset employed in this re-
search is roughly equivalent to a two-dimensional spreadsheet
or a database table.

Table 2: Test dataset descriptions
Dataset No of Att. Att. Types Instances Classes
NSL-KDD data 41 Real & Nominal 25192 23
Soybean data 35 Nominal 683 19
Image seg. data 19 Real 2310 7

5.1.1. The NSL-KDD Dataset
The Knowledge Discovery and Data Mining 1999 (KDD99)

competition data contain simulated intrusions in a military net-
work environment. It is often used as a benchmark to evalu-
ate models handling concept-drift. The NSL-KDD dataset is
the new version of the KDD99 dataset, which solved some of
the inherent problems of the previous dataset [37]. Although
the NSL-KDD dataset still suffers from some of the problems
raised by McHugh [38], the main advantage of the NSL-KDD
dataset is that the training and test data do not include redun-
dant and duplicate examples. Thus it becomes affordable for
us to run the experiments on the complete set of training and
test data without the need to randomly select a small portion
of them. Each record in the NSL-KDD dataset consists of 41
attributes and 1 class label. Table 3 shows the number of train-
ing instances of normal and intrusion classes in the NSL-KDD
dataset.

Table 3: Training instances in the NSL-KDD dataset
Types Classes Instances
Normal normal 13449
Denial of service back, land, neptune, 9234
(DoS) pod, smurf, tenddrop
Remote to user ftp write, guess passwd, 209
(R2U) impa, multihop, phf, spy,

warezclient, warezmaster
User to root buffe overflow, perl, 11
(U2R) loadmodule, rootkit
Probing ipsweep, nmap, satan, 2289

protsweep
Total = 23 Total = 25192

5.1.2. The Large Soybean Database
Another test dataset employed in this research is a database

for large soybeans. There are 35 attributes in this dataset and
all attributes are nominalized. There are altogether 683 data
instances with 19 class values in this dataset.
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5.1.3. The Image Segmentation Database
The goal of this dataset is to provide an empirical basis for

research on image segmentation and boundary detection. This
dataset is also used in this research to evaluate the ensemble
classifier for novel class detection. There are overall 2310 data
instances in this database. They are described by 19 attributes
and 7 class values including brickface, sky, foliage, cement,
window, path, and grass.

5.2. Experimental Setup

We implement the above proposed algorithms (Algorithms
1-5) in Java for experimental analysis and performance evalua-
tion. We use NetBeans IDE 7.1 in redhat enterprise linux 5 for
Java coding. NetBeans IDE is the first IDE providing support
for JDK 7 and Java EE 6 (http://netbeans.org/index.html). The
experiments were conducted using a machine with an Intel Core
2 Duo Processor 2.0 GHz processor (2 MB Cache, 800 MHz
FSB) and 1 GB of RAM. The code for ID3 and C4.5 is adopted
from Weka3, open source data mining software written in Java
[39]. Weka3 is a collection of machine learning algorithms for
data mining tasks, which contains tools for data pre-processing,
classification, regression, clustering, association rules, and vi-
sualization. These learning algorithms can be either applied
directly to a dataset or called from our own coding.

There are various approaches to determine the performance
of data stream mining classifiers. The performance can simply
be measured by counting the proportion of correctly classified
instances in an unseen test dataset. Table 4 summarizes the
symbols and terms used throughout in Equations 9 to 11. These
equations are used to especially evaluate the performance of the
proposed ensemble classifier. Equation 9 is used to calculate
the percentage of how many novel class instances are misclassi-
fied as existing classes, with Equation 10 employed to produce
the percentage of how many existing class instances are falsely
identified as novel classes and Equation 11 used to calculate the
total misclassification error.

Table 4: Used symbols and terms in Equations 9-11
Symbol Term
N Total instances in the data stream
Nc Total novel class instances in the data stream
Fp Total existing class instances misclassified as novel classes
Fn Total novel class instances misclassified as existing classes
Fe Total existing class instances misclassified
Mnew % of novel class instances misclassified as existing classes
Fnew % of existing class instances falsely identified as novel classes
ERR Total misclassification error

Mnew =
Fn ∗ 100

Nc
(9)

Fnew =
Fp ∗ 100
N − Nc

(10)

ERR =
(Fp + Fn + Fe) ∗ 100

N
(11)

5.3. Experimental Analysis
We compare the proposed ensemble model for classification

and novel class detection in concept-drifting data streams with
the C4.5 decision tree induction classifier and the k-Nearest
Neighbors (k-NN) algorithm. Both C4.5 and k-NN classifiers
are widely used in real-life classification problems. They are
employed as two baseline systems in our experiments. We will
henceforth use the following acronyms: EM for the ensemble
model, C4.5 for the C4.5 decision tree classifier, and k-NN for
the k-Nearest Neighbors algorithm, for the discussion of the ex-
perimental results and performance comparison.

Table 5, 6, and 7 tabulate the performance details of classi-
fiers in the presence of novel classes respectively for the test
NSL-KDD dataset, the soybean and the image segmentation
databases. Each table shows the number of training and test in-
stances with existing and novel class labels used in each of the
three test experimental runs for one test dataset. The results in-
dicate the ensemble model trained with a fixed number of class
labels shows great robustness to learn and classify new class
concepts in each test data stream and outperforms the other two
traditional supervised baseline algorithms.

Table 5: Performance comparison of classifiers in the presence of novel classes
using the NSL-KDD dataset

Instances Existing Novel Classifier Correctly
classes classes classified

instances (%)
Training: 13449 1 6 EM 90.74
Testing: 9234 C4.5 86.49

k-NN 80.75
Training: 22683 7 10 EM 85.00
Testing: 220 C4.5 44.09

k-NN 41.36
Training: 22903 19 4 EM 79.03
Testing: 2289 C4.5 52.55

k-NN 51.90

Table 6: Performance comparison of classifiers in the presence of novel classes
using the soybean dataset

Instances Existing Novel Classifier Correctly
classes classes classified

instances (%)
Training: 192 5 2 EM 95.55
Testing: 90 C4.5 81.11

k-NN 78.88
Training: 364 10 3 EM 95.93
Testing: 172 C4.5 71.51

k-NN 68.02
Training: 630 15 4 EM 93.23
Testing: 53 C4.5 77.81

k-NN 75.56

Figures 7, 8, and 9 further illustrate the comparison of the
accuracy rates of classifiers in concept-drifting data streams on
each test dataset. In order to compare the performances in in-
tense concept-drifting classification tasks, among each test ex-
perimental dataset, test instances especially with a large number
of novel classes are used to evaluate the ensemble and the two
baseline classification models and produce the accuracy results
shown in Figures 7, 8, and 9.
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Figure 7: The comparison of accuracy rates of classifiers in concept-drifting
using the NSL-KDD dataset.

Figure 8: The comparison of accuracy rates of classifiers in concept-drifting
using the soybean dataset.

Figure 9: The comparison of accuracy rates of classifiers in concept-drifting
using the image segmentation dataset.

Table 7: Performance comparison of classifiers in the presence of novel classes
using the image segmentation dataset

Instances Existing Novel Classifier Correctly
classes classes classified

instances (%)
Training: 180 6 1 EM 90.00
Testing: 50 C4.5 40.00

k-NN 38.00
Training: 987 5 2 EM 90.13
Testing: 315 C4.5 34.51

k-NN 33.72
Training: 1343 4 3 EM 87.53
Testing: 417 C4.5 31.81

k-NN 31.76

Table 8 also summarizes the error metrics of each classifier
for each test dataset. The columns headed by Mnew, Fnew, and
ERR report the values of the corresponding metrics on an entire
dataset. The error rate values for each classifier shown in the
above three columns are produced using Equations 9-11.

Table 8: Performance comparison of different classifiers
Dataset Classifier Mnew Fnew ERR

EM 0.9 0.4 0.7
NSL-KDD C4.5 1.9 0.9 1.5

k-NN 5.8 0.9 3.3
EM 3.7 0.0 2.0

Soybean C4.5 5.0 1.0 4.0
k-NN 5.6 1.9 5.1
EM 0.0 0.0 3.3

Image Seg. C4.5 6.2 2.3 8.0
k-NN 3.7 3.0 10.4

Moreover, Table 9 summarizes the accuracy rate of each clas-
sifier on each dataset using 10-fold cross-validation. The 10-
fold cross-validation is a process of breaking a dataset into 10
subsets of size n

10 , where n is the total number of the instances
in the dataset. Then each classification model is trained with
nine subsets and tested on the remaining subset. This process-
ing repeats 10 times and takes a mean accuracy rate for each
classification model. The classification rates shown in Table 9
are calculated based on the number of instances that are cor-
rectly classified in each dataset. Similarly, the misclassification
rates are calculated based on the number of instances that are
incorrectly classified in each test dataset.

Table 9: Performance comparison of classifiers using 10-fold cross-validation
Dataset with Classifier Classification Misclassification
instances rate (%) rate (%)
NSL-KDD EM 92.65 7.34
(25192 instances) C4.5 86.35 13.64

k-NN 83.30 16.69
Soybean EM 98.24 1.75
(683 instances) C4.5 91.50 8.49

k-NN 89.75 10.24
Image Seg. EM 92.77 7.22
(2310 instances) C4.5 90.34 9.65

k-NN 84.71 15.28

Figure 10, 11, and 12 show the ROC (receiver operating char-
acteristic) curves of classifiers on each dataset. A ROC curve
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shows the trade-off between the true position rate and the false
positive rate for a classifier. The true positive rate is the pro-
portion of instances that are correctly classified, and the false
positive rate is the proportion of instances that are misclassi-
fied. The vertical axis of an ROC curve represents the true pos-
itive rate. The horizontal axis represents the false positive rate.
A classification model closest to the diagonal line of the ROC
curve is the least accurate model. In all these three figures, the
ensemble model shows the most promising and competitive ac-
curacy rates followed by the performance of the C4.5 decision
tree classifier and with the k-NN model achieving the last posi-
tion in classification performance on the selected test sets.

Figure 10: The ROC curves of classifiers using the entire NSL-KDD dataset.

Figure 11: The ROC curves of classifiers using the entire soybean dataset.

Overall, the above experimental results indicate that the en-
semble model has great flexibility and adaptability in novel
class detection in data stream environments in comparison with
the traditional C4.5 and k-NN classifiers. The generated deci-
sion trees and the similarity-based clustering method embedded
in the ensemble classifier constantly monitor and identify the ar-
rival of exceptional classes. The ensemble model representing
new concepts in data streams also employs a majority weighted
voting technique for classification. The above evaluation results
prove that it outperforms the traditional classifiers and improves
classification accuracy rates greatly in challenging real-life data

Figure 12: The ROC curves of classifiers using the entire image dataset.

stream applications.

6. Conclusions

In this paper, we introduce an adaptive ensemble model for
classification and novel class detection in concept-drifting data
streams. Especially, novel class instances in data streams can
be automatically detected in our approach. Our work addresses
challenging issues in data stream classifications such as infi-
nite length, limited labeled data, concept-drift, and concept-
evolution. The proposed adaptive ensemble model generally
continuously updates itself with newly arrived data instances
so that it represents the most recent concepts in data streams.
Another main objective of this research is to minimize the total
misclassification error (ERR) in concept-drifting classification
tasks. We tested the performance of the ensemble model on
three benchmark datasets borrowed from UCI machine learning
repository. The experimental results proved that this ensemble
classifier efficiently detects the arrival of novel class instances
and also greatly improves the classification accuracy rates un-
der different circumstances. In future work, we will focus on
concept-drifting under dynamic feature/attribute sets to further
extend the capabilities of the current adaptive ensemble classi-
fier.
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